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Abstract. We investigate the structure and dynamics of the interface between two immiscible liquids in
a three-dimensional disordered porous medium. We apply a phase-field model that includes explicitly
disorder and discuss both spontaneous and forced imbibition. The structure of the interface is dominated
by a length scale ξ× which arises from liquid conservation. We further show that disorder in the capillary
and permeability act on different length scales and give rise to different scalings and structures of the
interface properties. We conclude with a range of applications.

PACS. 46.55.+d Tribology and mechanical contacts – 81.40.Pq Friction, lubrication, and wear – 07.79.-v
Scanning probe microscopes and components – 83.50.Lh Slip boundary effects (interfacial and free surface
flows)

1 Introduction

The flow of fluids through a porous medium has a tremen-
dous importance in fields as diverse as the petroleum in-
dustry [1], the pulp and paper science [2–5], in soil sci-
ence [6] and the construction industry [7,8]. Particularly
important for pulp and paper are ink penetration into pa-
per, and its relation to printing defects [3], water evapora-
tion from a freshly formed sheet, and surface coating [4,5].
Of similar interest in soil science is contaminant infiltra-
tion and sedimentation [9,10].

Despite this importance, several aspects of the flow re-
main unknown and the problem poses several challenges,
both theoretical and experimental [11]. This is in part due
to the fact that widely diverse length and time scales are
present. The flow of liquids depends on the physics at the
pore level (of length of a few µm or less) while the ob-
servable effects extend from lengths of a few cm up to
several meters. Likewise, the invasion of a single pore may
occur on the scale of a millisecond while the complete ab-
sorption process may range from a few seconds to several
minutes or even hours. The problem is thus to connect
these length and time scales in a satisfactory way. Empir-
ical relations to describe both single and multiphase flow
of liquids through a porous medium have existed for a long
time, but it is only recently that qualitative and quanti-
tative knowledge of the flow has been gained [6,12–15].

A crucial aspect of the flow pattern is that it is never
homogeneous; the disordered pore structure leads to un-

a e-mail: martin.rost@uni-bonn.de

even flow. In the case of multiphase flows with immisci-
ble liquids, this is reflected in the shape of the interface
separating them. Typically, the interface is not flat but
presents a rough, stochastic structure, as depicted in Fig-
ure 1. In some cases, the interface can even be unstable,
leading to the formation of discontinuous domains [12]. It
is clear that an unstable interface can have severe conse-
quences, e.g., in oil recovery, and several studies have tack-
led this problem, within percolation theory and detailed
network simulations [12,16,17]. Even if the the interface is
stable, its stochastic nature has several observable effects.
For example, solid particles or chemicals are often carried
by the flow (hydrodynamic dispersion [13]). These can be
pollutants in ground-water flow or ink pigments during the
printing process. The inhomogeneities of the flow are then
reflected in the distribution of pollutants or ink pigments.
For ink in paper, this uneven ink penetration leads to the
formation of a print defect called “mottle” [18]. Another
example of the effect of uneven fluid flow is provided in
Figure 2, which shows light transmission across a sheet of
a dry paper as it is imbibing water.

Our purpose in this paper is to describe the struc-
ture and the dynamics of a rough interface between two
fluid phases in a three-dimensional porous medium dur-
ing the process of imbibition. We discuss the case illus-
trated in Figure 1 where the medium, originally dry or
saturated with another fluid, is immersed into a reser-
voir. The imbibition process can either be spontaneous,
due solely to capillary forces, or be forced at some volume
rate of flow. We concentrate on cases where the imbibition
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Fig. 1. Schematic representation of the imbibition process.
The three-dimensional porous medium is in contact with a liq-
uid reservoir at z = 0 and a rough interface h(x, t) between
the wet and dry part of the medium evolves dynamically. The
imbibition process can be either spontaneous or forced.

front remains compact, in which case an interface separat-
ing the wet and non-wet part of the medium exists and
is denoted by the position h(x, t) where x = (x, y) are
the spatial coordinates in the transverse plane. This situ-
ation was also considered by Tartakosvky et al. [14], who
have shown that the randomness of the front increased
in time. Similar fluctuations in the interface were shown
by Ronen et al. [15] to be essential to an understanding
of the phenomenon of capillary fringe in porous media.
To treat this case, we introduce a phase-field model that
includes explicitly surface tension, liquid conservation as
well as disorder, both at the level of the capillary pressure
and permeability. We show that the interface is a self-
affine fractal which can be described within the framework
of dynamical roughening and scaling [19]. We discuss the
consequences of the imbibition dynamics for the “uneven-
ness” of the imbibed liquid in relation to typical industrial
operations, as illustrated, e.g., in by Figure 2. A brief ac-
count of these results has been published in reference [20],
with specific applications to printing phenomena. Here,
we expand and generalize the model, present new results
on the effect of permeability disorder and on the temporal
behavior of the interface roughness (including pinning by
gravity) and consider a broader range of possible applica-
tions.

We consider the case where a viscous liquid displaces
a gas or another liquid with a much smaller viscosity. In
this case, the flow is characterized by the viscosity η of
the imbibing fluid and the surface tension σ of the in-
terface between the fluid and the other fluid/gas. The
main quantities characterizing the porous medium are the
coarse-grained permeability κ and the capillary pressure
pc. The permeability describes the ease with which a fluid
can flow through the medium while the capillary pressure
describes the “suction” property of the medium. The fluid
flow is inhomogeneous due to the disordered structure of

Fig. 2. Top view of light transmission through a sheet of paper
with water penetrating from the bottom towards the top. The
sheet, with non-uniform thickness d(x) is lit from below with
visible light, which allows a good resolution. The wet sheet
scatters light less strongly than the dry sheet and points of
high intensity then correspond to high local values of h(x, t).
In a first approximation, the intensity of light through the sheet
I(x, t) = I0(x) exp(γh(x, t)) where I0(x) is the initial (before
wetting) intensity of transmitted light and h(x, t) is the height
of the invasion front.

the medium. In terms of macroscopic quantities, this dis-
order is reflected into variations ∆κ and ∆pc of the perme-
ability and capillary pressure respectively. We shall show
that the controlling parameter of the roughening process
is the capillary number

Ca =
ηv

σ
(1)

where v is the velocity of the flow, and that the relative
importance of capillary and permeability disorder is char-
acterized by a length scale

ξκ =
√

κ

Ca
. (2)
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Note that by its definition κ has a dimension of area or
length squared. On length scales much smaller than ξκ,
roughening is dominated by capillary disorder while per-
meability disorder is relevant at large length scales. We
further show that there exists a length scale

ξ× =
√

κ

Ca
(3)

which arises from the conserved nature of the fluid. This
length scale separates two regimes of roughness; at low
capillary numbers and in spontaneous imbibition, the
front has the roughness exponent χ = 0.75 on length scales
l � ξ× and is asymptotically flat for l � ξ×. The ratio of
the two length scales ξκ/ξ× = Ca−1/2 which means that
short length scale roughness is dominated by capillary dis-
order in typical situations (Ca < 1). In cases where the
disorder in the permeability is present and dominant, the
short scale (l � ξ×) roughness has an exponent χ = 3/2
while being flat asymptotically. In general however, capil-
lary disorder is dominant.

The outline of this paper is as follows. In the next sec-
tion, we describe pattern formation in imbibition, specify
the conditions under which a sharp rough interface exists
between the two fluids and briefly describe the concepts
of dynamical scaling. We also introduce the phase field
model of imbibition, list the conditions under which it can
be applied and connect the model with phenomenological
interface equations. Section 3 presents the results of the
numerical simulations. We discuss separately spontaneous
and forced imbibition and highlight the role of disorder in
the permeability. Applications of the results as well as the
conclusions are presented in Section 5.

2 Fluid flow in disordered media

The flow of the liquids is influenced in great part by the
surface chemistry of the underlying solid matrix, which is
reflected in their wettability properties, and in the contact
angle θ which determines whether a liquid is wetting or
non-wetting. Important is also σ, the surface tension as-
sociated with the interface between the wetting and non-
wetting liquids. In a pore of radius R0, the combination of
the curved interface and surface tension creates a pressure
difference or capillary pressure

∆p ≡ pc = 2
σ cos θ

R0
(4)

which gives rise to the motion of the fluids.
Imbibition refers to the case where the wetting fluid

displaces the non-wetting one, while the opposite case is
called drainage. Spontaneous imbibition occurs when the
invading fluid does so under the sole influence of capillary
forces, with no external pressure while forced imbibition
involves a combination of capillary phenomena and an ex-
ternally enforced flow rate or pressure difference.

The fluids are characterized by the viscosity, ηi and
density ρi where i = w, nw refers respectively to the wet-
ting and non-wetting fluids; the viscosity ratio is M =

ηw/ηnw. The study of flows in specifically designed porous
networks has been used to observe several microscopic
mechanisms for fluid flow. The most important are film
flow along the solid matrix (pore walls) and piston-like
motion of the fluid [11]. Depending on the relative im-
portance of these mechanisms, several phenomena can be
observed [12]. There can be discontinuous formation of
wetted domains due to surface flow in pores, of branched
structures, as well as compact domains with well defined
interfaces.

The controlling parameters are the viscosity ratio M
of the two fluids and the capillary number, equation (1).
For M � 1 and large enough capillary numbers a sharp
rough interface exists, with a spatial structure present-
ing stochastic fluctuations similar to those represented in
Figure 1.

These fluctuations belong to the field of kinetic rough-
ening, which has a long history [19]. For the special case of
imbibition we refer to [11] and give a brief overview here.
Statistical properties of interface configurations are ex-
tracted from ensemble averages over different realizations
of disorder (denoted by brackets 〈〉) and spatial averages
(denoted by an overbar). These yield the average height

H(t) = 〈h(x, t)〉, (5)

and it is useful to note that in contrast to many other
phenomena, in spontaneous imbibition H(t) does not in-
crease with a constant velocity. The roughness of the in-
terface is described by the total variance or square of
its width w2(t) = 〈(h(x, t) − H(t))2〉, and the related
spatial height-difference correlation function G(x, t) =
〈(h(x + x′, t) − h(x′, t))2〉1/2. Usually more convenient is
the structure factor S(k, t) = 〈|h(k, t)|2〉 calculated from
the Fourier transform h(k, t) of the interface profile. For
isotropic media S(k, t) = S(k, t) with k = |k|. The total
variance of the interface is related to the structure fac-
tor by

w2(t) = 2π

∫
dk kS(k, t). (6)

Self-affine rough interfaces exhibit scaling forms of these
quantities. The vertical extent of amplitude fluctuations
w(t) depends on their lateral correlation length ξ(t) ∼ t1/z

by the relation w(t) ∼ ξ(t)χ.
In the present case, we expect the frozen-in quenched

nature of the noise to be dominant. In such cases, usually
the roughness falls either into the Quenched Edwards-
Wilkinson (QEW) or Directed Percolation Depinning
(DPD) universality classes. The QEW universality class
is appropriate for domain walls in disordered magnets
and was also shown to be partly relevant in imbibition
of thin porous media. For a two-dimensional interface,
a numerical determination of the exponents yields χ =
0.75 [21,22]. The DPD universality class was originally
designed specifically to model imbibition, but its applica-
tion remains inconclusive up to now. For a two dimen-
sional interface, the scaling exponent under DPD rough-
ening is χ � 0.4 [19,24,23].
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2.1 Phase field model of imbibition

Empirical descriptions of fluid flow in porous media are
based on Darcy’s law, which relates the flux of liquid to a
macroscopic pressure gradient

j = −κ

η
∇p (7)

as well as viscosity and permeability of a given material.
This equation is valid at the level of a representative vol-
ume element [25], and although it can be modified in case
of film flow [26], due to inertial effects [27], or swelling of
the porous matrix [28], it is generally a valid description
of the flow.

For multi-phase flow of incompressible fluids, the di-
mensionless saturations of wetting and non-wetting fluids
cw and cn are defined as their respective volume fractions.
These are proportional to the concentrations, ρi = Pci,
where P is the porosity. By liquid conservation the dy-
namics of the fluids is then obtained through continuity
equations. For constant porosity

∂ρw

∂t
+ ∇ · jw = 0

∂ρn

∂t
+ ∇ · jn = 0 (8)

together with the constraint ρw + ρn = P−1. The flux
ji of each fluid obeys equation (7) and a closure relation
between the pressures in the two fluids Pw−Pn = pc at the
interface introduces a coarse-grained capillary pressure, cf.
equation (4).

Since the permeability is only a geometric factor, both
fluids should have identical values of κ. We neglect that
trapped droplets of the receding fluid or similar blocking
mechanisms as well as swelling of the surrounding matrix
may lead to a dependence of the permeability on the re-
spective saturations, κi = κi(cw), because in most parts
the ci are either 0 or 1 and we consider the eventual value
of κi at those saturations.

A particular case of equation (8) is when the non-
wetting fluid cannot support a pressure gradient and has
no intrinsic dynamics. This is the case examined in this
paper and is often described using Richard’s Equation [29]

∂ρ

∂t
= ∇ · (D(ρ)∇ρ) (9)

where D(ρ) = η−1κ(ρ) ∂pc(ρ)/∂ρ is a phenomenologi-
cal diffusion constant. This phenomenological approach is
not useful to study front roughening since spatial non-
homogeneities in the capillary pressure and permeability
are not explicitly included. It also misses the crucial role
of the front in the fluid intake.

The role of a roughening front can be explored by
simulations based on percolation theory [30,31] or us-
ing detailed pipe network models [32]. The former applies
very well when the flux of liquids are extremely small,
but cannot deal entirely with the situation at hand since
liquid conservation is not included. Pipe network models

explicitly include conservation and thus serve to explore
front instability and to obtain the curves of concentration-
dependent permeability and capillary pressure. They are
however computationally very heavy, and cannot deal eas-
ily with front roughening.

A continuum approach, based on phase-fields,
was taken by Dubé et al. and Hernández-Machado
et al. [33–37], as well as Mitkov et al. [38] and
Papatzacos [39]. This approach is different from those
based on interface equations, as it concentrates on the bulk
of the porous medium, into which is incorporated disorder.
It is a coarse-grained mesoscopic approach which includes
automatically the relevant interface equation. It is also
possible to obtain approximate interface equations for the
front roughness. Even though these may not reproduce ex-
actly all scaling exponents, the procedure highlights the
relevant length scales of the problem.

The simplest phase field approach to imbibition starts
from the observation that all coarse-grained descriptions
of flow in porous media, based on Darcy’s Law equa-
tion (7), are essentially diffusive (the presence of the vis-
cosity results already from the coarse-graining procedure).
So all inertial effects of hydrodynamics are neglected and
only the pressure gradient determines the flux of liquid j.

The fluid saturation c(r, t) (r = (x, z)) is then defined
throughout the column of the porous medium, with dy-
namical evolution of equation (8) for the wetting fluid. The
flux is taken to be of Darcy’s form, j = −η−1κ(r, c)∇p,
with a permeability that may be a function of both space
and concentration. However, the interface between the
fluid and air should also appear explicitly, since this is
where the capillary pressure arises.

This is accomplished by introducing a generalized ther-
modynamic free energy for the saturation field

F [c] =
∫

dr
(

1
2β

c2(c − 1)2 − g(c)pc(r) +
K

2
|∇c|2

)
.

(10)
To obtain the corresponding Cahn-Hilliard equation one
derives the corresponding chemical potential which corre-
sponds to the pressure in the porous medium because it
drives the flux,

P (c, r) = β−1c(c− 1)(2 c− 1)−K∇2c− g′(c) pc(r) (11)

where β is the compressibility of the fluid [40] and K is a
constant related to the effective interface tension between
both fluids. Strictly speaking, the model should include
both concentration and density as variable, with associ-
ated chemical potential and pressure [11,35]. However, in
the present case of an incompressible fluid displacing a
non-wetting fluid (whose dynamics is essentially irrelevant
in the situation where the interface remains compact) the
pressure and chemical potential are trivially related and
the present description is perfectly adequate.

For pc = 0, this free energy allows two stable homoge-
neous phases, described by the values c = 1 and 0, which
we interpret as liquid and air respectively. Variations in
the concentrations are penalized by the presence of the
square gradient term but this term also allows a solution
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that connects the liquid and air phase,

c(z) =
1
2

(
1 + tanh

z − z0

ζ

)
(12)

in the direction perpendicular to the interface. This solu-
tion describes an interface of finite thickness ζ ∼ (βK)1/2

located at z = z0 between homogeneous regions of sat-
uration c = 1 and c = 0. With this interface is associ-
ated a surface tension σ = (K/β)1/2 which corresponds
to the energy increase brought by the interface. This is a
phenomenological coarse-grained surface tension that does
not necessarily correspond to the microscopic surface ten-
sion in a pore. It is present whenever there is contact be-
tween fluid elements in adjoint pores and acts in a way
that minimizes the global liquid-air interface.

The term g′(c) = dg(c)/dc is chosen so that it is non-
zero only within the interfacial region and pc thus cor-
responds to a coarse-grained capillary pressure. For con-
venience, we choose g(c) = c2(3−2c)/6, so that g′(c) =
c(1−c), but the precise form of this term is not relevant.

The role of pressure is also apparent in the bound-
ary conditions [33]. In the case of spontaneous imbibition
the pressure at the bottom of the medium is set to the
atmospheric pressure p(x, z = 0) = p0. The boundary
condition at the upper end ∂zp(x, z = Lz) = 0 ensures
that there are no pressure gradients on top of the porous
medium. These lead to boundary conditions on the satu-
ration ∂zc(x, z=Lz) = 0 and at z = 0 a value c solving

β−1c (c − 1)(2c − 1) − pc = 0. (13)

In order to model imbibition situations at constant flow
rate, as in [41], constant flux boundary conditions κ ∂zp =
ηγ0 are imposed. Both situations, spontaneous imbibition
and constant flux shall be examined in details below.

Gravity stops the imbibition front at a height where
capillary and hydrostatic pressure balance and produces a
pinned interface. This can be taken into account by adding
the hydrostatic component p → p− ρmgc(r)z where ρm is
the fluid mass density and g is the gravitational constant.
Inserting the pressure into the continuity equation for the
wetting fluid, equation (8) yields an imbibition model of
the form [36]

η
∂c(r, t)

dt
− ρg

∂κ(c, r)c(r, t)
∂z

= ∇ · (κ(c, r)∇p). (14)

Note that although gravity can only be introduced prop-
erly through an hydrodynamical field [42], the convective
term reproduces the correct equation of motion for the
average position of the imbibition front.

Disorder enters the problem naturally though the
transport properties of the porous medium. The capillary
pressure can change throughout the medium and so we
assume the following correlations

〈pc(r)〉 = p̄c > 0
〈pc(r)pc(r′)〉 − p̄2

c = (∆pc)2δ(r−r′). (15)

Gaussian distribution is assumed, but the results do not
depend on the precise shape of distribution, only on the

first and second moments quoted above because the phase
field effectively averages over regions of size ζ3. The local
permeability, κ(r) (neglecting any dependence on the fluid
saturation c) is also assumed random, characterized by the
correlations (again the precise shape of distribution does
not matter)

〈κ(r)〉 = κ̄ > 0
〈κ(r)κ(r′)〉 − κ̄2 = (∆κ)2δ(r − r′). (16)

There are a priori no reasons to expect any simple rela-
tion between the two fluctuating quantities and they are
kept independent. Nevertheless, a simple estimate can be
obtained by the capillary tube model, where κ̄ � r2

0/12
and p̄c � 2σ/r0 where r0 is a typical pore radius. Al-
though in a single pore large capillary pressure means low
permeability and vice versa this simple relation is lost by
coarse-graining after which one volume element contains
many elementary pores. If the variation of pore size is of
order δr0 centered around a mean value r̄0, the variation
of κ and pc can be related as |∆κ/∆pc| � 2κ̄/p̄c.

It is fairly easy to argue that capillary and permeabil-
ity disorder act on different length scales, as was pointed
out by Pauné and Casademunt [43]. To first order, the
fluctuations in the permeability arise in the form

(∇∆κ) · (∇p) ∼ ∆κ

ξκ

ηv

κ̄
(17)

where Darcy’s law has been used and ξκ represents a yet
unknown length scale. On the other hand, fluctuations in
the capillary pressure appear as

κ̄∇2∆pc ∼ κ̄
∆pc

ξ2
κ

. (18)

Equating the two terms then yields

ξκ ∼ κ̄2

ηv

∆pc

∆κ
∼ κ̄1/2

Ca
(19)

where the last form assumes that permeability and capil-
lary pressure can be written in terms of a typical capillary
radius [11,43].

The most important length scale in the model is the
interfacial thickness ζ = (Kβ)1/2. Within this scale, the
concentration relaxes to the equilibrium values c = 0 and
1 with a rate ∼κ̄/(ηβ). On larger scales, the dynamics
is quasistationary and dominated by the motion of the
interface. It then reduces to the classical equations for
fronts in porous media. The pressure field is obtained by
a Laplace equation ∇ ·(κ∇p) = 0 with a Gibbs-Thomson-
Laplace boundary condition at the interface

pint = σK − p̄c (20)

where K is the global curvature of the imbibition front.
The velocity of the interface normal to the curvature is
then obtained as

vn(h(x, t)) = η−1 κ(x, h(x, t)) ∂np(x, h(x, t). (21)
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On length scales l � ζ, the dynamics of the phase field ap-
proach is completely equivalent to the usual treatment of
two-phase flow in porous media. It is however a lot simpler
computationally, since the interface is explicitly included
in the model and does not have to be tracked. Note that
the model does not include trapping, any bubbles of phase
c = 0 are eventually reduced. This is however not a prob-
lem in three dimensions, where trapping is not relevant
[44], and in two dimensions, for very thin media, where
air can escape from the surface on the sides.

2.2 Average height and interface equation

We explore the dynamics of the interface by first consider-
ing the behavior of the average interface height H(t), i.e.,
we neglect all variations in the permeability and capillary
pressure. Under forced imbibition, the influx of liquid is
constant and so H(t) = γ0t, a constant progression. In
spontaneous imbibition, the action of capillary forces and
the solution of the Laplace equation ∇2p = 0, with bound-
ary condition p(H) = −p̄c is

p(z) = −p̄c
z

H
. (22)

The velocity is then

dH

dt
=

κ̄

η

p̄c

H
. (23)

This is the classic Lucas-Washburn result [45] and leads
to an average progression H(t) =

√
2κ̄p̄ct/η. Fluctuations

of dH/dt have recently been studied and were shown to
contain information about the inherent nonlocality of the
interface dynamics [46]. The interface is continuously slow-
ing down. In presence of gravity,

dH

dt
=

κ̄

η

( p̄c

H
− ρg

)
, (24)

which implies that there is an equilibrium height Hg =
p̄c/ρg which is attained by the interface. The interface
follows Lucas-Washburn behavior H(t) ∼ t1/2 until a time

τg =
κ̄p̄c

η
(ρg)−2 (25)

after which it approaches Hg exponentially H(t) = Hg(1−
exp(−t/τg)).

Insight into the roughening process can be obtained
from an interface equation, i.e., the dynamical evolu-
tion of the imbibition front h(x, t). The linear equation
for the Fourier component h(k, t) can be written in the
form [11,33,35]

ḣk = −
(

(v + g̃) +
κ̄

η
σk2

)
|k|hk + |k| κ̄

η
{p̃}k +

v

κ̄
{κ̃}k

(26)
where v = dH/dt the average velocity of the interface,
g̃ = ρgκ̄/η. The first two terms on the right hand side of

the equations act so as to damp the fluctuations. Notice
that there are functions of the modulus of momenta, which
come from the non-local nature of the roughening process.
Disorder is introduced by the functions {p̃}k and {κ̃}k

which respectively represent the Fourier transformation of
capillary and permeability disorder at the interface. Since
the noise term depends explicitly on the interface position,
analytical solutions are extremely complicated and have
been obtained only in very simplified cases. Furthermore,
its linear nature may hide important non-linearities. It
has also been used to study (in an approximate version)
numerically roughening, by transforming back and forth
between the real and Fourier space representations [47].

Nevertheless, this equation highlights the principal
length scales of the problem. There is a length scale ξ×
that separates viscous and capillary damping, which was
also confirmed experimentally [49], given by

ξ2
× =

κ̄

η

σ

v + g̃
. (27)

In spontaneous imbibition and in the absence of gravity,
the average height H ∼ t1/2, and the velocity v ∼ t−1/2,
leading to a dynamical length scale ξ× ∼ t1/4. When grav-
ity effects are important, the correlation length ξ× attains
its maximal value at pinning (i.e., H = Hg). We can in-
troduce the Bond number [13]

Bo =
ρgκ

σ
(28)

and rewrite ξ×(Hp) = κ1/2Bo−1/2. Finally, in forced imbi-
bition, this length scale is fixed and delineates two distinct
regimes of roughening.

Equation (26) also shows clearly the existence of the
length scale ξκ ∼ κ̄2∆pc/(ηv∆κ), already introduced in
equation (19). Since both pc and κ are stochastic quanti-
ties, equation (19) thus represents an average, whose par-
ticular value depends on the exact noise distribution. Nev-
ertheless, it shows clearly that capillary disorder is most
efficient on scales l � ξκ while permeability disorder acts
on scales l � ξκ. Note that the effective strength of perme-
ability disorder is proportional to the interfacial velocity.
This is of course because disorder in the pore structure
can influence the invasion front only if there is motion.

3 Numerical results

We first a-dimensionalize the phase field equation (14) by
rescaling distance by the interfacial width ζ (r → r/ζ)
and time by the timescale τ = βζ2η/κ̄ (t → t/τ). The
dimensionless pressure is then

P (c,x) = c(c − 1)(2 c − 1) −∇2c − g(c)pc(x) (29)

with the dimensionless capillary pressure pcβ. The dimen-
sionless phase field equation

∂c

∂t
+ γ∇c = ∇m∇p (30)
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Fig. 3. Average height and width of the interface in spon-
taneous imbibition. The main figure shows the evolution of
H2 as a function of time. The linear behavior confirms Lucas-
Washburn behavior. The inset shows the evolution of the over-
all width as a function of time, where power-law increase with
time is observed. The straight line is a fit to the data, indi-
cating w2(t) ∼ t2β with 2β = 0.41 ± 0.03, in accordance with
the value β = 0.19 quoted in the text. The simulations were
performed with pc = 0.2 and ∆pc = 0.2.

where the dimensionless gravity γ = ρgβ/ζ and m =
1 + ∆κ/κ̄. Equation (30) is then discretized on a cubic
lattice using a simple finite difference scheme in space and
the Euler method in time with variable time step length
to avoid numerical instabilities. Higher order schemes have
been used for comparison, and have brought no significant
corrections to simple and fast methods. Typical simula-
tions are made on lattices of size Lx = Ly = 256∆x and
Lz = 150∆z with ∆x = ∆z = ζ/5. Calculations of the
width are averaged over 5 realizations of disorder while
angular averages are performed in the calculations of the
structure factors.

From the phase field, the interface h(x, t) is obtained
by finding the position at which c(x, h(x, t), t) = 1/2.
Overhangs, hardly present in the simulations, are system-
atically cut off in evaluating the interface position. In the
following, we present results for spontaneous imbibition,
with and without gravity, and for forced flow imbibition.

3.1 Spontaneous imbibition

We first show the numerical simulation of the phase field
model for spontaneous imbibition without gravity. In this
case, the interface slows down continuously and the aver-
age interface height H(t) ∼ t1/2. Since the capillary num-
ber slows down constantly, capillary disorder is the main
source of roughness in the front. Figure 3 shows the result
of the simulations for the average height and the global
width. The average height H(t) ∼ t1/2 as predicted, while
the global width of the front increases in time following
w(t) ∼ t0.19. This is different from any standard roughen-
ing exponents and is due to the non-local character of the
problem.

Fig. 4. Temporal evolution of the radial structure factor for
spontaneous imbibition. The data show successively, from the
lowest to the highest, the structure factors between H = 5 and
H = 40. The insert shows the rescaling of the data with the
length scale t1/4 according to equation (31).

Insight into this non-locality can be gained from the
study of the structure factor of the interface, shown in
Figure 4 at different times. The power-law decay at large
wavevectors indicate a roughness exponent χc = 0.75,
consistent with the local value of the QEW universality
class [21,22].

These results can be explained by the length scale
ξ×(t) ∼ t1/4, introduced in equation (27), as is shown in
the inset of Figure 4 where the structure factor is rescaled
to the universal shape

S(k, t) = k−2−2χcS(kξ×(t)) (31)

with the roughness exponent χc = 0.75 and the scaling
function S(u) ∼ u2+2χc if u � 1 and S(u) ∼ const.
otherwise. Using equation (6), this yields for the global
width w(t) ∼ ξχc

× (t) ∼ t0.19, in agreement with the nu-
merical observation. Note that this implies that the ex-
ponent β = 0.19 is not a true temporal exponent. As in
two-dimensional imbibition [33], the interface is correlated
only up to the length ξ×(t), and it is the dynamics of this
length scale that controls the global width.

When gravity is present, there is an equilibrium height
Hg = pc/ρg, which is approached exponentially after a
time τg given in equation (25). The height H(t) is de-
scribed at all times by

H(t) + Hg ln
(

1 − H(t)
Hg

)
= −γt. (32)

Using equation (24), the correlation length ξ× can be writ-
ten as

ξ2
×(H(t)) =

σH(t)
pc

(33)

where H(t) is given by the solution of equation (32).
We have already shown that at pinning, the length scale
ξ×(Hg) = (κ̄/Bo)1/2. Percolation theory, for imbibition
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Fig. 5. Dynamical evolution of the imbibition front in presence
of gravity. The main plot shows the radial structure factor for
height H = 5 (lowest curve) to H ≈ 35 (highest curve) for
parameters γ = 2.5×10−3. The inset in the upper right corner
shows time versus the average interface height. The numerical
simulation (diamonds) compares favorably to the analytical
form equation (32), drawn as a solid line. The lower inset shows
the scaling of the structure factor at different heights according
to equation (34).

at very low capillary numbers, introduces a similar length
scale ξp ∼ Bo−γ where γ = 0.47 in two dimensions [48]
and γ = 4/7 in three dimensional imbibition [50]. For all
practical purposes, this is indistinguishable from our re-
sults, valid in both 2 and 3 dimensions. Of course, the
dynamical approach to pinning is different from percola-
tion theory. Figure 5 shows the dynamical evolution of the
structure factor as a function of time until pinning, and
we can establish the scaling form

S(k, t) ≡ S(k, H(t)) ∼ ξ2+2χc

× S(kξ×(H(t))) (34)

where again χc = 0.75 and the scaling function similar
to the scaling function of spontaneous imbibition, equa-
tion (31). The only difference is now that ξ×(t) = ξ×(H)
is not a power law in time anymore.

3.2 Forced flow imbibition

In forced flow imbibition, the interface moves at the
constant velocity H(t) = γ0t where γ0 is the imposed
flux. In this case, we expect that the length scale ξ× =
(κ̄σ/γ0η)1/2 = (κ̄/Ca)1/2, a fixed value that limits the
range of fluctuations. In addition, the capillary number
is not necessarily small and we expect both capillary and
permeability disorder to be relevant. The length scale ξκ

should then become apparent in the roughness spectrum.
Figure 6 shows the evolution of the structure factor for an
interface where both capillary and permeability disorder
are present. Although it is clear that the roughness of the

Fig. 6. Temporal evolution of the radial structure factor of an
interface for which both capillary and permeability disorder
is relevant. The numerical simulations were performed with
∆pc/p̄c = 0.1 and ∆κ/κ̄ = 0.5. There is a complex interplay
between both types of noise, as exposed in the inset, where it
is shown that the structure factor is composed by the sum of
the individual effects of capillary (with power law tail ∼k−3.5)
and permeability (∼k−6) disorder.

interface is cut off at a given length scale, the tail of the
power spectrum shows a curvature which prevent a clear
identification of a roughness exponent.

This complex behavior can be explained by consid-
ering separately the effect of capillary and permeability
disorder, schematically shown in the inset of Figure 6. We
first perform simulations where only capillary disorder is
present. Figure 7 shows the power spectrum of the sat-
urated interface for various pressure gradients, with only
capillary noise present. As in spontaneous imbibition, cap-
illary disorder gives an interface that has the roughness ex-
ponent χc = 0.75 within a range l � ξ× while being flat
asymptotically. The length ξ× ∼ v−1/2 now has a fixed
value and the inset of Figure 6 shows that the structure
factor of the saturated interface can be written as

S(k, t) = k−2−2χcS(kv−1/2) (35)

where S(u) has also the same scaling as spontaneous im-
bibition, given after equation (31).

We then examine the structure factor of a saturated
interface where only permeability disorder is present, as
shown in Figure 8. Immediately apparent is the velocity
dependence of the amplitude of the structure factor. This
is consistent with the presence of the factor of v multiply-
ing the noise term in equation (26). The roughness expo-
nent χκ ≈ 2, meaning that the interface is superrough, as
is also the case in two dimensions [11,37,47]. Notice how-
ever that the amplitude of the fluctuations is extremely
reduced compared to the fluctuations caused by capillary
disorder. The length scale ξ× still cuts off the large scale
fluctuations and the data can now be collapsed to the
common form

S(k, t) = v2k−2−2χκS(kv−1/2) (36)
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Fig. 7. A log-log plot of the radial structure factor for satu-
rated interfaces in forced flow imbibition when only capillary
disorder is present. The various curves represent different pres-
sure gradients γ0 (from top to bottom) γ0 = 0.01, 0.05 and 0.1.
The decay of the structure factor still indicates a fractal sur-
face, with roughness χ = 0.75. The fractal character is again
cut off at a given length scale, but this time, it has a fixed

value ξ× ∼ γ
−1/2
0 . The inset shows the rescaling of the data

with velocity to the universal form of equation (35).

Fig. 8. Radial structure factor of a saturated interface when
only permeability disorder is present. The numerical simu-
lations were performed with γ0 = 0.005, 0.01 and 0.1, with
∆κ/κ̄ = 0.5. The inset shows the rescaling of the data based

on the length scales ξ× ∼ γ
−1/2
0 .

where the exponent χκ ≈ 2 and the scaling function s(u)
given after equation (31).

When both capillary and permeability disorder are
present, the length scale ξκ separates the influence of cap-
illary and permeability noise, as shown in the inset of Fig-
ure 6. Capillary disorder, gives the main contribution to
roughness on short scales k > ξ−1

κ while permeability dis-
order roughens the opposite regime. The complete spec-
trum then results from the superposition of both types of
disorder, being cutoff on length scales larger than ξ×.

Fig. 9. Time evolution of the interfacial width for various pres-
sure gradients γ0 = 0.067, 2γ0 and 4γ0, respectively from top to
bottom. The faster interface has a smaller total roughness. In
order to get reliable data, the simulations must be performed
with lattice spacing δ = 0.75ζ and dt = 0.0025. The initial
slope of w(t) is smaller than the value β = 0.25 expected the-
oretically, but the rescaling of the data to the common form
equation (37), shown in the inset confirms our predictions

To study the dynamics of the fluctuations, we concen-
trate on the low capillary number regime, where only cap-
illary disorder is relevant. Based on the linearized interface
equation, equation (26), we expect early time roughening
to be dominated by a dynamical exponent z = 3, as was
found in two dimensions by Soriano et al. [51]. So there
should be a correlation length ξ3(t) ∼ (σt)1/3 such that
w(t) ∼ ξχc

3 ∼ tβ . With the value χc = 0.75, this then gives
w(t) ∼ tχc/3 ∼ t0.25. This behavior should persist until a
time t× such that ξ3(t×) = ξ×, which implies t× ∼ v−3/2.

The numerical simulations show that the saturation of
the width is extremely rapid, and it is therefore difficult
to obtain reliable data. The initial slope of the width is
always systematically smaller than the expected value of
0.25 and indicates a very gradual approach to saturation.
At later times, the width flattens out, to an effective expo-
nent (only defined on the small window available) β ≈ 0.1,
more representative of logarithmic roughening than true
power-law behavior, a trend confirmed by the form of the
structure function. For all practical purposes, the inset of
Figure 9 shows that the dynamical width of the interface
obeys the scaling form

w(t) = ξχc

× ω(t/t×) (37)

where ω(u) ∼ uχc/3 for times early times t � t×. This
is the standard scaling equation for the dynamical width,
with initial power law w(t) ∼ tχc/0.3 saturating to a fixed
value w(t � t×) ∼ ξχc

× at times much larger than the
crossover time t× ∼ v−3/2. The linearized equation also
predicts the existence of a time scale ξ1 ∼ vt. The time
development of the width is determined by the ξ3 term
as long as ξ3 � ξ× while the slower ξ1 is only effective at
times when ξ1 � ξ×. It is thus possible to add a correction
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term to the scaling function ω(u � 1) ∼ const.+O(log u).
But again, we must emphasize that this behavior is very
difficult to see numerically.

4 Experimental implications

We now discuss some important implications of our re-
sults. We will focus on the hindsight that our approach,
mid-way between the full complexity of the network simu-
lations and the simplified one-dimensional treatment may
bring. We also concentrate on flows at low capillary num-
bers, so that capillary disorder is dominant.

First, we present the dynamics of the global concen-
tration C(z), defined as the spatial average of the local
concentration over the front

C(z) = θ(h(x, t) − z). (38)

where the function θ(x) = 1 if x ≥ 0 and θ(x) = 0 is
x < 0. Because the interface separating the wet and dry
phase of the medium is a self-affine fractal [52], this is
a well-defined quantity, with limits C(0) = 1 and C(z →
∞) = 0. The transition between these two values occurs
over a region of width w(Ca), the roughness of the two-
dimensional interface at capillary number Ca. Assuming
that the interface has Gaussian fluctuations, it is indeed
straightforward to show that [52]

C(z) =
∫ ∞

z

D[h]P [h] ≡ erfc
(

z − H0(t)
w(t)

)
(39)

where P [h] ∼ exp(−h2/w2) represents the Gaussian prob-
ability of the fluctuations and erfc(z) is the complemen-
tary error function. This then presents the picture of im-
bibition as the progression of an average front becoming
more and more spread out as time goes by. In spontaneous
imbibition, the front has average progression H(t) ∼ t1/2

and is spread over a length w(t) ∼ tχc/4. In forced im-
bibition, the average front progresses at constant velocity
while its width increases like tχc/3 until it reaches the sat-
urated value w ∼ Ca−χc/2. Note that this picture of a one-
dimensional front with time varying width is a common
feature of Richard’s Equation and experiments of imbibi-
tion that look at the global average features of the front,
such as NMR and capillary fringes phenomena [15].

Another important application of the results presented
above is fluid breakthrough across a thin porous medium
such as a membrane, a paper sheet or a coating layer. In
spontaneous imbibition, if H0 is the thickness of the layer,
then the average time needed for breakthrough is T0 =
ηH2/κpc. However, due to the disordered structure of the
medium, the breakthrough is not uniform but takes place
by “patches”, as shown in Figure 2. Since at height H0,
the interface has global roughness w0 ∼ H

χ/2
0 , the time

it takes for completing breakthrough is ∆T ∼ ∆(H2
0 ) ∼

w0H0 ∼ H
1+χ/2
0 . If the flow of liquid is forced with some

flux γ0, then the range of the fluctuations is limited by
the length ξ× ∼ (σ/γ0)1/2 and breakthrough is completed
after a time ∆T = ξχ

×/γ0 ∼ γ
−1−χ/2
0 .

Fig. 10. Spatial structure of light intensity through a par-
tially wet sheet of paper (Fig. 2). The inset shows the interface
h(x, t) according to equation (41) while the main figure de-
picts its structure factor and clearly shows self-affine behavior
(roughness exponent χ ≈ 0.25 at large wavevectors. The com-
plex structure of paper cannot be treated within the simple
model presented here, but the figure nevertheless illustrates
that the concepts of dynamical roughening can be applied to
this case.

The structure of the patches is also connected to
the roughness of the underlying interface. We define the
patches as χ(x, t) = θ(h(x, t)−H0(t)), the fluctuations of
the rough interface δh(x, t) = h(x, t) − H0(t) around the
mean, and the associated correlation function

G(x,x′, t) = 〈χ(x, t)χ(x′, t)〉. (40)

A simple expansion to first order yields G ∼
〈δh(x, t)δh(x′, t)〉, with Fourier transform 〈|δh(k, t)|2〉 ∼
S(k, t), the structure factor given in equations (31, 34)
and (36) for the various cases considered in this paper.
Referring to Figure 2, Figure 10 shows the structure fac-
tor of the quantity

ln
I(x, t)
I0(x)

∼ γh(x, t), (41)

which, assuming an exponential relation between local
height and light intensity, corresponds to the interfacial
height of the wetting front. It is clear that in this par-
ticular case, the propagation of the front is influenced by
phenomena such as dynamical swelling of the fiber or dif-
fusion of water through the fiber, and the wetting front
is to some extent correlated with the height and density
fluctuations (often referred to as the “formation” of the
sheet). Finite size effects are also important in this partic-
ular experiment [53], but it is clear that the structure fac-
tor shows a crossover to a self-affine factor at small length
scales. Dynamical wetting of the paper structure could
then be approached by extending the method exposed in
the paper along the lines explored in reference [54]. This
is however beyond the scope of this work.
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5 Conclusion

We have explored front roughening of a fluid-gas inter-
face in a three-dimensional disordered solid. The follow-
ing generic features have already been studied in the two-
dimensional case. The pore structure gives rise to two
types of disorder: capillary disorder, acting specifically at
the interface, and permeability disorder, related to the
overall flow of liquid. Permeability and capillary disor-
ders act on different length scales. On short length scales,
capillary disorder is stronger while permeability disorder
dominates on larger length scale. On the scales for which
capillary disorder is dominant, the interface in three di-
mensions has roughness exponent χc = 0.75 while the
roughness the interface on larger length scales is super-
rough. The interplay between fluid conservation and sur-
face tension gives rise to the length scale ξ× = (σ/v)1/2 ∼
Ca−1/2, which separates two regimes of roughness. The
effect of this length scale is most apparent in sponta-
neous imbibition, where the effect of permeability disor-
der is less important. In such a case, the interface has
roughness exponent χc on scales smaller than ξ× while
being flat asymptotically. In addition spontaneous imbi-
bition is characterized by an interface that is continually
slowing down, leading to a time-dependent cutoff length
scale ξ× = ξ×(t) ∼ t1/4. This results in a time increase
of the width of the interface w(t) ∼ ξχc

× (t) described by
an effective dynamical exponent χc/4. In forced imbibi-
tion, capillary disorder is again dominant for flows with
a small capillary number. In this case, the length scale
ξ× is constant in time. The interface still has a roughness
exponent χc on scales smaller that ξ×, while being much
smoother on large scales. The initial dynamical increase of
the width is now given in terms of the exponent β = χc/3,
corresponding to the exponent z = 3.

Finally, our results on three-dimensional roughening
of interfaces can be applied in several situations of fluid
penetration in porous media. One example is given by the
fluctuations ∆v of average interface velocity v̄ [46], im-
plying that ∆v ∼ v̄1/2 for a spontaneously rising column
of fixed width under the influence of dominant capillary
disorder. The roughness of the front is also of practical in-
terest as highlighted by the study of water fronts referred
to in Sections 1 and 4. This clearly shows the need for
more systematic experiments.
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32. C.-H. Lam, V.K. Horváth, Phys. Rev. Lett. 85, 1238

(2000)
33. M. Dubé, M. Rost, K.R. Elder, M. Alava, S. Majaniemi,

T. Ala-Nissila, Phys. Rev. Lett. 83, 1628 (1999)
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